Error estimates for the Davenport-Heilbronn theorems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimates for the Davenport–heilbronn Theorems

We obtain the first known power-saving remainder terms for the theorems of Davenport and Heilbronn on the density of discriminants of cubic fields and the mean number of 3-torsion elements in the class groups of quadratic fields. In addition, we prove analogous error terms for the density of discriminants of quartic fields and the mean number of 2-torsion elements in the class groups of cubic f...

متن کامل

Four Perspectives on Secondary Terms in the Davenport-heilbronn Theorems

This paper is an expanded version of the author’s lecture at the Integers Conference 2011. We discuss the secondary terms in the Davenport-Heilbronn theorems on cubic fields and 3-torsion in class groups of quadratic fields. Such secondary terms had been conjectured by Datskovsky-Wright and Roberts, and proofs of these or closely related secondary terms were obtained independently by Bhargava, ...

متن کامل

Zeros of the Davenport-Heilbronn counterexample

We compute zeros off the critical line of a Dirichlet series considered by H. Davenport and H. Heilbronn. This computation is accomplished by deforming a Dirichlet series with a set of known zeros into the DavenportHeilbronn series.

متن کامل

Limit Theorems for Random Evolutions with Explicit Error Estimates*

We think of x (t, y) as the position of a particle at time t when its velocity is v (t). The process x (t, y) is the simplest example of a random evolution: one-dimensional motion at a constant but random velocity determined by the state of the Markov chain associated with v(t). We denote by P(y,~i){" }, Y real, v~sA, the probability laws of the joint process (x (t, y), v (t)), where v (0)= v/....

متن کامل

Seminorm estimates for the error

We extend some previous results of our work [1] on the error of the averaging method, in the one-frequency case. The new error estimates apply to any separating family of seminorms on the space of the actions; they generalize our previous estimates in terms of the Euclidean norm. For example, one can use the new approach to get separate error estimates for each action coordinate. An application...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2010

ISSN: 0012-7094

DOI: 10.1215/00127094-2010-007